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An open challenge in charge-transfer (CT) chemistry is to 1a-Zn
quantify the degree of ground-state CT in weakly interacting
donor-acceptor systems. While various absorption and scattering &
techniques provide information about €T they tend to be less
reliable for weakly coupled systems. This report describes a new
femtosecond visible pump/mid-IR probe spectroscopic approach
to assess directly the ground- and excited-state degrees of CT in}
donor-spacet-acceptor (B-Sp—A) structures. \

Two classes of (porphinato)zinc(Il) (PZn)-based $p—A com-
pounds with either quinonyld) (1a-Zn, 3a-Zn, PZn-Q;’ Figure 44
1A) or N-(N'-octyl)pyromellitic diimide PI) (PZn-P1, PZn()PI;8°
Figure 2B) electron acceptors were interrogated. These molecules_ 21
have a range of Sp structures and exploit conventional linear and%
s-stacked coupling motifs. Carbonyl antisymmetric stretching mode < o9
frequency domain transient-IR spectra of these species were re-2 | _
corded and analyzed for /I moieties. The characteristic A =2
modes shift to significantly lower energy relative to the ground-
state frequencies in the respective charge-separated (CS) states ¢
these complexes (Table 1, Figure 1). The frequency shifts reflect
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the decreased force constants for these modes in the CS state, tracl Wavenumber / cm”
ing the augmented A-localized electronic charge in this staterelative Figure 1. Structures of the quinonyl-based-Sp-A complexes (A); linear
to the ground state. visible spectra (B), and transient IR spectra (ClLafZn, 3a-Zn, andPZn-Q.

. . ... Time delays for thda-Zn, 3a-Zn, andPZn-Q transient spectra are, respectively,
Interestingly, the magnitude of the carbonyl frequency shift 0.6, 5.0, and 1.7 ps (experimental conditioris;= 580 nm, solvent= 99:1

between the ground and CS statky,, varies in compounds  CDClspyridineds, T = 23°C).
featuring the same acceptor moiety (Table 1). For exanpig,is
~7.3% smaller inla-Zn as compared to that observed3a-Zn
(Table 1). Note also that tha-Zn ground-state frequency/) is
red-shifted while its corresponding CS-state frequemgy)(s blue-
shifted with respect to the analogous modeSafZn.

As the D and A moieties ida-Zn are juxtaposed, there is sub-
stantial mixing of the neutral (BSp—A, ) and charge-resonance
(DT—Sp—A-, y1) wave functions in the ground statgd),>? sig-
nified by apronounced CT band (Figure 1B). The properties of the ground
and CS states can be described by the admixtures aftla@dy,
wave functions:2 The contribution of the charge-resonance wave
function, ¥4, in the ground electronic state can be estimated from
the electronic coupling matrix elemehtpa,’® C, ~ |Hpa/AE],
whereAE is the ground-to-CS state energy gap. The magnitude of
the ground-state dipole moment, as well as the degree to which
charge is localized on A in the ground state, scales ®ith The
Q/PI carbonyl mode acceptor frequency depends on the vibrational
force constantk), vco = 4/k/m/2zc. The force constant in the
ground and CS states changes with a weighted average contributio
of the charge resonant state. If the frequency chafgg, is small
relative to the ground-state frequeneywh<< va; Ava = va — va-)
and the D-A interaction is weakd < Ava, whered is the fre-
quency change in the ground state due to the contribution of the
charge-resonance state), the magnitud& @dn be computed from

the value ofC;%! § = AvRC? whereAvy = v§ — va, andvy

and v;~ are ground- and CS-stat@/PI vibrational frequencies
that lack contributions, respectively, from thg and v, wave
functions. The experimentally measured relative frequency &hift
(& = (Ava — Avp)/AvR) can be used to estimate the extent to
which the CT wave function contributes {s; this approach has
been employed previously in transient Raman analysis of MLCT
statesc Since& = 2C,2, C,2 is expected to scale with the Mulliken
population on the acceptoP§).'*

In 3a-Zn, the D-to-A centroid distance is10.5 A7 We therefore
assume thag; contributes little toys, and approximately one unit
of charge is transferred from D to A in the CS state, and we take
the measureB@a-Zn v, andva- frequencies to be reasonable ap-
proximations forvg andvy -, respectively. Irila-Zn, the minimum
D—A interplanar separation (2.97 A) is less than the van der Waals
contact distancéAs such, strong mixing ofyo andy; wave func-
tions is anticipated. This mixing should serve to enhance ground-
state polarization and, correspondingly, diminish CS state polariza-
o in 1a-zn with respect to that observed in the analogous states
of 3a-Zn.

The experimentally determined charge-resonance contribution to
the ground state§(2) of 1a-Zn is 3.7%. A smaller contribution
(1.5%) was determined f&?Zn-Q, where a difluorophenyl bridge
connects the poprhyryl-5 and quinonyl-2 positions (Figure 1C, Table
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Figure 2. (A) PZn-Pl andPZn()PI linear visible spectra. (B) Transient IR
spectra and linear FTIR spectra obtained®@n-PI andPZn()PI. The time
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moieties inPZn-P1.813This conclusion is consistent with previously
LPzn-PL A published data that indicatgg for PZn()Pl possesses little am-
plitude on the intervening ethynyl grodphat electronically isolated
PZn and PI units. The Figure 2 transient data also underscore a
dramatic increase of thBl~ bandwidth in thePZn-P| CS state
relative to that observed for the ground-st®& absorbance,
signaling augmented CS-state structural inhomogeneity. Given the
PZn-PI structure, this inhomogeneity is largely reflected in the PZn-
to-PI torsional angle distributiol. The magnitude of th@1-/P1°
800 700 frequency shifts is half as large as the analogQu#Q° shifts in

Wavelength / nm these D-Sp-A systems, highlighting a clear correlationof with
PZn-(-P1,, B A size and the sensitivity of the force constants to A charge density.

=, _fe The experimentally determined degrees of charge transfer are
mirrored in semiempirical (ZINDO) ground-state calculations on
the structures (Table 1). The analysis indicates qualitative agreement
between computed ground-state charge transfer and that determined
by the pump/mid-IR probe spectroscopy.

In conclusion, we have demonstrated a new, useful approach to
determine the extent of CT in ground and CS states using visible
pump/mid-IR probe spectroscopy. These data show that the fre-
quency shift,Ava, established by this method provides a more
accurate measure of the degree of CT as compared to the migthods
which rely on the ground-state frequency shift alone, as determi-
rzh by _ nation of Ava largely factors out frequency shifts that derive from
. . ~ FTIR | the local electrostatic environment. This added accuracy, coupled
1620 1640 1650 1680 1700 1720 1740 1760 1780 with the ability of this method to interrogate the electronic

Wavenumber / cm interaction matrix element between ground and CS states, enable
determination of new experimental benchmarks to test the power
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delays for the transient spectra are, respectively, 0.5 and 0.87 ps (experimentabf complimentary computational methods. Further, we note that
conditions: Ae(PZn-PI) = 595 nm;ie(PZn()PI) = 620 nm; solvent= 99:1 this approach may find particular utility when CT transitions either

CDClz:pyridineds, T = 23 °C).

overlap strongly with other bands or possess low oscillator strength.
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